288 research outputs found

    On Special Re-quantization of a Black Hole

    Full text link
    Quantized expressions for the gravitational energy and momentum are derived from a linearized theory of teleparallel gravity. The derivation relies on a second-quantization procedure that constructs annihilation and creation operators for the graviton. The resulting gravitational field is a collection of gravitons, each of which has precise energy and momentum. On the basis of the weak-field approximation of Schwarzschild's solution, a new form for the quantization of the mass of a black hole is derived.Comment: 4 page

    DeWitt-Virasoro construction

    Full text link
    We study a particular approach for analyzing worldsheet conformal invariance for bosonic string propagating in a curved background using hamiltonian formalism. We work in the Schrodinger picture of a single particle description of the problem where the particle moves in an infinite-dimensional space. Background independence is maintained in this approach by adopting DeWitt's (Phys.Rev.85:653-661,1952) coordinate independent formulation of quantum mechanics. This enables us to construct certain background independent notion of Virasoro generators, called DeWitt-Virasoro (DWV) generators, and invariant matrix elements of an arbitrary operator constructed out of them in spin-zero representation. We show that the DWV algebra is given by the Witt algebra with additional anomalous terms that vanish for Ricci-flat backgrounds. The actual quantum Virasoro generators should be obtained by first introducing the vacuum state and then normal ordering the DWV generators with respect to that. We demonstrate the procedure in the simple cases of flat and pp-wave backgrounds. This is a shorter version of arXiv:0912.3987 [hep-th] with many technical derivations omitted.Comment: 18 pages, shorter version of arXiv:0912.3987 [hep-th] accepted for publication in Pramana - Journal of Physic

    Asymptotic Implied Volatility at the Second Order with Application to the SABR Model

    Full text link
    We provide a general method to compute a Taylor expansion in time of implied volatility for stochastic volatility models, using a heat kernel expansion. Beyond the order 0 implied volatility which is already known, we compute the first order correction exactly at all strikes from the scalar coefficient of the heat kernel expansion. Furthermore, the first correction in the heat kernel expansion gives the second order correction for implied volatility, which we also give exactly at all strikes. As an application, we compute this asymptotic expansion at order 2 for the SABR model.Comment: 27 pages; v2: typos fixed and a few notation changes; v3: published version, typos fixed and comments added. in Large Deviations and Asymptotic Methods in Finance, Springer (2015) 37-6

    Heat Kernel Expansion and Extremal Kerr-Newmann Black Hole Entropy in Einstein-Maxwell Theory

    Full text link
    We compute the second Seely-DeWitt coefficient of the kinetic operator of the metric and gauge fields in Einstein-Maxwell theory in an arbitrary background field configuration. We then use this result to compute the logarithmic correction to the entropy of an extremal Kerr-Newmann black hole.Comment: 12 page

    Gauge invariance and radiative corrections in an extra dimensional theory

    Full text link
    The gauge structure of the four dimensional effective theory originated in a pure five dimensional Yang-Mills theory compactified on the orbifold S1/Z2S^1/Z_2, is discussed on the basis of the BRST symmetry. If gauge parameters propagate in the bulk, the excited Kaluza-Klein (KK) modes are gauge fields and the four dimensional theory is gauge invariant only if the compactification is carried out by using curvatures as fundamental objects. The four dimensional theory is governed by two types of gauge transformations, one determined by the KK zero modes of the gauge parameters and the other by the excited ones. Within this context, a gauge-fixing procedure to quantize the KK modes that is covariant under the first type of gauge transformations is shown and the ghost sector induced by the gauge-fixing functions is presented. If the gauge parameters are confined to the usual four dimensional space-time, the known result in the literature is reproduced with some minor variants, although it is emphasized that the excited KK modes are not gauge fields, but matter fields transforming under the adjoint representation of SU4(N)SU_4(N). A calculation of the one-loop contributions of the excited KK modes of the electroweak gauge group on the off-shell WWV, with V a photon or a Z boson, is exhibited. Such contributions are free of ultraviolet divergences and well-behaved at high energies.Comment: 7 pages, conference proceedings, a new reference was added, the title has been change

    Quantum gravitational contributions to quantum electrodynamics

    Full text link
    Quantum electrodynamics describes the interactions of electrons and photons. Electric charge (the gauge coupling constant) is energy dependent, and there is a previous claim that charge is affected by gravity (described by general relativity) with the implication that the charge is reduced at high energies. But that claim has been very controversial with the situation inconclusive. Here I report an analysis (free from earlier controversies) demonstrating that that quantum gravity corrections to quantum electrodynamics have a quadratic energy dependence that result in the reduction of the electric charge at high energies, a result known as asymptotic freedom.Comment: To be published in Nature. 19 pages LaTeX, no figure

    Remarks on the method of comparison equations (generalized WKB method) and the generalized Ermakov-Pinney equation

    Full text link
    The connection between the method of comparison equations (generalized WKB method) and the Ermakov-Pinney equation is established. A perturbative scheme of solution of the generalized Ermakov-Pinney equation is developed and is applied to the construction of perturbative series for second-order differential equations with and without turning points.Comment: The collective of the authors is enlarged and the calculations in Sec. 3 are correcte

    Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory

    Get PDF
    This article is meant as a summary and introduction to the ideas of effective field theory as applied to gravitational systems. Contents: 1. Introduction 2. Effective Field Theories 3. Low-Energy Quantum Gravity 4. Explicit Quantum Calculations 5. ConclusionsComment: 56 pages, 2 figures, JHEP style, Invited review to appear in Living Reviews of Relativit

    Renormalization of the Yang-Mills theory in the ambiguity-free gauge

    Full text link
    The renormalization procedure for the Yang-Mills theory in the gauge free of the Gribov ambiguity is constructed. It is shown that all the ultraviolet infinities may be removed by renormalization of the parameters entering the classical Lagrangian and the local redefinition of the fields.Comment: 20 pages. Some explanations extended, one reference added. Final version published in the journa

    An inhomogeneous toy-model of the quantum gravity with explicitly evolvable observables

    Full text link
    An inhomogeneous (1+1)-dimensional model of the quantum gravity is considered. It is found, that this model corresponds to a string propagating against some curved background space. The quantization scheme including the Wheeler-DeWitt equation and the "particle on a sphere" type of the gauge condition is suggested. In the quantization scheme considered, the "problem of time" is solved by building of the quasi-Heisenberg operators acting in a space of solutions of the Wheeler-DeWitt equation and the normalization of the wave function corresponds to the Klein-Gordon type. To analyze the physical consequences of the scheme, a (1+1)-dimensional background space is considered for which a classical solution is found and quantized. The obtained estimations show the way to solution of the cosmological constant problem, which consists in compensation of the zero-point oscillations of the matter fields by the quantum oscillations of the scale factor. Along with such a compensation, a slow global evolution of a background corresponding to an universe expansion exists.Comment: 18 page
    • …
    corecore